Свайные молоты в строительстве

Штанговый дизель-молот

Свайные молоты состоят из массивной ударной части, движущейся возвратно-поступательно относительно направляющей конструкции в виде цилиндра (трубы), поршня со штоком, штанг и т. п. Ударная часть молота наносит чередующиеся удары по головке сваи и погружает сваю в грунт. Направляющая часть молота, снабжена устройством для закрепления и центрирования молота на свае.

Рабочий цикл молота включает два хода — холостой (подъем ударной части в крайнее верхнее положение) и рабочий (ускоренное движение ударной части вниз и удар по свае). По роду привода свайные молоты разделяются на  дизельные и гидравлические. Основными параметрами свайных молотов являются, масса ударной части, наибольшая энергия одного удара, наибольшая высота подъема ударной части, частота ударов в минуту.

Для погружения свай на объектах городского строительства широко применяют энергетически автономные мобильные дизель-молоты, которые представляют собой прямодействующие двигатели внутреннего сгорания, работающие по принципу двухтактного дизеля. Они получили преимущественное распространение в строительстве благодаря энергетической автономности, мобильности, простой и надежной конструкции и высокой производительности.

По типу направляющих для ударной части дизель-молоты делятся на трубчатые и штанговые. У трубчатого дизель-молота направляющей ударной части в виде массивного подвижного поршня служит неподвижная труба, у штангового — направляющими ударной части в виде массивного подвижного цилиндра служат две штанги. Распыление дизельного топлива в камере сгорания у штанговых молотов — форсуночное, а у трубчатых — ударное. Дизель-молоты подвешиваются к копровой стреле с помощью захватов и подъемно-сбрасывающего устройства («кошки»), предназначенного для подъема и пуска молота и прикрепленного к канату лебедки копровой установки.

Различают легкие (масса ударной части до 600 кг), средние (до 1800 кг) и тяжелые (свыше 2500 кг) дизель-молоты.

Штанговый дизель-молот

Рис. 5.3. Штанговый дизель-молот

Штанговый дизель-молот (рис. 5.3) состоит из следующих основных узлов: поршневого блока с шарнирной опорой, ударной части — подвижного рабочего цилиндра, двух направляющих штанг с траверсой, механизма подачи топлива и захвата — «кошки». Поршневой блок включает поршень с компрессионными кольцами, отлитый заодно с основанием. В центре днища поршня установлена распылительная форсунка, соединенная топливопроводом 13 с плунжерным топливным насосом высокого давления (до 50 МПа), питающимся из топливного резервуара. Основание поршневого блока опирается на шарнирную опору, состоящую из сферической пяты и наголовника. В основании закреплены нижние концы направляющих штанг, верхние концы которых соединены траверсой. По штангам перемещается массивный ударный цилиндр со сферической камерой сгорания в донной части. На внешней поверхности цилиндра укреплен штырь (выступающий стержень), приводящий в действие топливный насос при падении ударной части вниз. Для запуска молота в работу захват — «кошку», подвешенный к канату лебедки копра, опускают вниз для обеспечения автоматического зацепления крюка за валик ударного цилиндра, после чего «кошку» и сцепленную с ней ударную часть поднимают лебедкой в верхнее крайнее положение. Далее поворотом вручную (через канат) рычага сброса освобождают от «кошки» ударный цилиндр и он под действием собственной силы тяжести скользит по направляющим штангам вниз. При надвижении цилиндра на поршень воздух, находящийся во внутренней полости цилиндра, сжимается (в 25—28 раз) и температура его резко повышается (до 600° С). При нажатии штыря цилиндра на приводной рычаг топливного насоса дизельное топливо по топливопроводу подается к форсунке и распыляется в камере сгорания, смешиваясь с горячим воздухом. При дальнейшем движении цилиндра вниз горячая смесь самовоспламеняется, и в то же мгновение цилиндр наносит удар по шарнирной опоре, наголовник которой надет на головку сваи. Расширяющиеся продукты сгорания смеси (газы) выталкивают ударную часть вверх и выходят в атмосферу. Поднимающийся рабочий цилиндр быстро теряет скорость, под действием собственного веса начинает опять падать вниз, и цикл повторяется. Дизель-молот работает автоматически до выключения топливного насоса.

Штанговые дизель-молоты обладают малой энергией удара (25…35 % потенциальной энергии ударной части). Их применяют для забивки в слабые и средней плотности грунты легких железобетонных  свай, стальных труб и шпунта при сооружении защитных шпунтовых стенок траншей, котлованов и каналов. Штанговые дизель-молоты выпускаются с массой ударной части 240 и 2500 и 3000 кг, развивают энергию удара соответственно 3,2 и 42 кДж при частоте ударов 50…55 в минуту и степени сжатия 16 и 25.

Трубчатые дизель-молоты предназначены для забивки в грунт преимущественно железобетонных свай массой 1,2… 10 т и могут работать при температуре окружающего воздуха от +40 до -40° С. При температуре ниже -25° С молоты при запуске подогревают.

Промышленность выпускает пять моделей однотипных трубчатых дизель-молотов, различающихся между собой массой ударной части, которая составляет 1250, 1800, 2500, 3500 и 5000 кг.

Конструктивными и технологическими особенностями трубчатых дизель-молотов является применение водяной системы охлаждения, кольцевой камеры сгорания типа «Тор» и принудительной смазки.

Все трубчатые дизель-молоты выполнены по единой конструктивной схеме, максимально унифицированы и состоят из следующих основных узлов (рис. 5.4): ударной части — поршня с компрессионными кольцами, сменного рабочего цилиндра и направляющей трубы 3, шабота /, по которому наносит удар поршень, топливной и масляной систем, пускового устройства — «кошки» с подъемно-сбрасывающим механизмом. 

Последовательность работы трубчатого дизель-молота

Рис. 5.4. Последовательность работы трубчатого дизель-молота

В верхней части направляющей трубы имеются две проушины для крепления каната при установке молота на копер. Рабочий цилиндр герметично закрыт снизу шаботом с компрессионными кольцами, передающим энергию удара поршня на сваю. К фланцу шабота прикреплен свайный наголовник. Между фланцами рабочего цилиндра и шабота установлен кольцевой резиновый амортизатор, предотвращающий жесткое соударение корпуса цилиндра и шабота при больших осадках сваи. В нерабочем состоянии рабочий цилиндр и шабот соединяют планкой. Нижний торец поршня — сферический и по форме соответствует выемке в шаботе. При полном контакте сферических поверхностей поршня и шабота (з момент удара) кольцевая полость, образованная кольцевыми выточками в их сферах, представляет собой камеру сгорания. Топливо в сферу шабота подается под давлением 0,3…0,5 МПа плунжерным насосом 8, которым управляет падающий поршень, нажимающий на приводной рычаг. К насосу топливо поступает по гибким резиновым шлангам из топливного бака. Полость рабочего цилиндра сообщается с атмосферой через четыре всасывающе-выхлопных патрубка, направленных вверх.

Смазка трущихся рабочих поверхностей цилиндра и поршня осуществляется принудительно. Отвод тепла от стенок рабочего цилиндра при повышенных температурах окружающего воздуха обеспечивается системой водяного охлаждения циркуляцион-но-испарительного типа, состоящей из расположенного в зоне камеры сгорания бака для воды с заливной и сливной горловинами.

В направляющей трубе со стороны, обращенной к копру, имеется продольный паз, в котором перемещается подъемный рычаг кошки, входящий в зацепление с поршнем при его подъеме при запуске молота.

Работа трубчатого дизель-молота осуществляется в такой последовательности. Перед пуском молота поршень поднимается «кошкой», подвешенной на канате лебедки копра в крайнее верхнее положение, после чего происходит автоматическое расцепление «кошки» и поршня (положение I). При свободном падении вниз по направляющей трубе поршень нажимает на приводной рычаг топливного насоса, который подает дозу топлива в сферическую выточку шабота (положение II). При дальнейшем движении вниз поршень перекрывает отверстия всасывающе-выхлопных патрубков и начинает сжимать воздух в рабочем цилиндре, значительно повышая его температуру. В конце процесса сжатия головка поршня наносит удар по шаботу, чем обеспечивается погружение сваи в грунт и распыление топлива в кольцевую камеру сгорания, где оно самовоспламеняется, перемешиваясь с горячим сжатым воздухом (положение III).

Часть энергии расширяющихся продуктов сгорания — газов (максимальное давление сгорания 7…8 МПа) передается на сваю, производя ее дополнительное (после механического удара) погружение, а часть расходуется на подброс поршня вверх на высоту до 3 м. Вследствие воздействия на сваю последовательно двух ударов — механического и газодинамического — достигается высокая эффективность трубчатых дизель-молотов. При движении поршня вверх (положение IV) расширяющиеся газы по мере открывания всасывающе-выхлопных патрубков выбрасываются в атмосферу. Через те же патрубки засасывается свежий воздух при дальнейшем движении поршня вверх. Достигнув крайнего верхнего положения, поршень начинает свободно падать вниз, рабочий цикл повторяется, и в дальнейшем молот работает автоматически до полного погружения сваи.

Таким образом, в течение первого такта цикла работы трубчатого дизель-молота происходит продувка цилиндра, сжатие воздуха, впрыск и разбрызгивание топлива, а в течение второго — самовоспламенение горячей смеси топлива с воздухом и расширение продуктов сгорания, выхлоп отработанных газов в атмосферу и засасывание в цилиндр свежего воздуха.

Высота подскока ударной части дизель-молотов регулируется путем изменения количества впрыскиваемого насосом топлива, что позволяет изменять величину энергии удара в зависимости от типа свай и плотности грунта.

Трубчатые молоты более эффективны, чем штанговые, так как при равной массе ударной части могут забивать более тяжелые (в 2…3 раза) сваи за один и тот же отрезок времени. Штанговые дизель-молоты имеют низкие энергетические показатели и невысокую долговечность (в 2 раза меньшая, чем у трубчатых), поэтому производство их сокращается, и они будут полностью заменены более совершенными трубчатыми молотами.

Трубчатые дизель-молоты развивают энергию удара 40… 160 кДж при высоте подброса ударной части 3000 мм и степени сжатия 15. Число ударов в минуту — 42.

Общим недостатком дизель-молотов является большой расход энергии на сжатие воздуха (50…60%) и поэтому сравнительно небольшая мощность, расходуемая на забивку сваи. Массу ударной части дизель-молота подбирают в зависимости от массы погружаемой сваи и типа применяемого молота. Так, масса ударной части штангового дизель-молота должна быть не менее 100…125%, а трубчатого — 40…70% от массы сваи, погружаемой в грунт средней плотности.

Гидравлические свайные молоты по конструкции и принципу действия аналогичны навесным гидропневматическим молотам (см. гл. 4), но обладают значительно большими массой ударной части и энергией единичного удара. Серийно гидравлические свайные молоты в настоящее время не выпускаются. В соответствии с перспективным типоразмерным рядом свайных гидромолотов предусмотрен выпуск молотов с массой ударной части 500…7500 кг и энергией единичного удара 15…75 кДж.

Гидравлические свайные молоты просты в эксплуатации, имеют высокий КПД (0,55…0,6), экологически безопасны, а их пусковые качества не зависят от условий забивки свай. Энергию удара для эффективной забивки свай в различных грунтовых условиях можно регулировать в широком диапазоне.

На рис. 5.5 показана принципиальная схема гидравлического свайного молота легкого типа с массой ударной части 500 кг.

Работа гидромолота осуществляется следующим образом. Боек и золотник гидрораспределителя находятся в крайнем нижнем положении. Рабочая жидкость насосом подается в гидропневмоаккумулятор и через полость а гидрораспредели теля в полость А свайного гидромолота 4. Полость В гид
ромолота соединена полостями г и в гидрораспределителя со сливом. Гидропневмоаккумуля тор заряжается, и боек под действием давления в полости А поднимается вверх одновременно с массой ударной части 10. Золотник гидрораспределителя удерживается в нижнем положении давлением в полости б, которая через полость Б гидромолота соединена с напорной магистралью. Боек поднимается до момента, когда полость б через полости Б и в соединится

Принципиальная схема

Рис 5.5. Принципиальная схема

Полость В отсекается от сливной магистрали и соединяется через полость г, осевое отверстие в золотнике и полость а с гидропневмоаккумуля-тором и насосом. В полости В создается давление за счет подачи рабочей жидкости от насоса и гидропневмоаккумулятора, так как рабочая поверхность бойка в полости В больше, чем в полости, боек вместе с ударной массой движется вниз и наносит удар по свае через наголовник с демпфером. В нижнем положении бойка полость золотника через полости Б и а соединяется с напорной магистралью, золотник опускается вниз, так как рабочая поверхность золотника в полости больше, чем в полости а. Полость В соединяется со сливом, гидропневмоаккумулятор заряжается, боек начинает движение вместе с ударной массой вверх. Затем цикл повторяется.